
Recommendation System Developer
Eshita Nandini

1, Janie Neal
2, Taylor Olson

3, and Christiana Prater-Lee
4

1University of California, Merced
2Pomona College

3University of Northern Iowa
4Vassar College

Abstract

We construct a user-friendly recommendation system for Harvard University using natural language

processing (NLP) techniques that, when given a course, selects similar courses using course syllabus data

obtained through Harvard’s Vice Provost for Advances in Learning (VPAL). Our Python-based Dash

system employs statistical models, such as Term Frequency Inverse Document Frequency (TF-IDF) and

Latent Semantic Analysis (LSA), in an ensemble method to rank similar courses using cosine similarity.

The system allows the user to upload textual data, select methods for cleaning and statistically modeling the

data, and then outputs a ranked list of similar documents. While the system will be used by the Harvard

community, it may also be adapted to other universities, as well as generalized to apply to different types

of queries.

I. Background

Harvard University offers more than eight thousand courses in over a hundred departments

across its fifteen colleges. This allows for a variety of classes, but may be challenging for students

and faculty to navigate the current catalog. For example, if a class is filled, students may have

trouble finding an alternate course with similar content. In addition, students may wish to avoid

classes which have overlapping content, but have a hard time comparing across colleges and

departments. Faculty members may also want to know about courses similar to the ones they

teach. In the past, Harvard faculty and staff have attempted to compare courses by hand, but this

manual method has proved to be inaccurate and tedious. A more efficient approach is to create a

recommendation system using natural language processing (NLP). Such systems are used in a

variety of applications (Netflix, Amazon, etc.) to suggest similar objects based upon input data.

1

TRiCAM • Summer 2017 •

II. Methods

When "given" a course, the system selects similar courses using course syllabi data. More

specifically, the generalized interface allows the user to upload any data set, select how they want

to clean given data, statistically model data, and then obtain a ranked list of similar documents

based off of the inputted one. NLP is applied to datasets obtained through Harvard’s Vice Provost

for Advances in Learning (VPAL). We work with 6707 course syllabi from Harvard’s College of

Arts and Sciences and the Graduate School of Arts and Sciences (GSAS).

Figure 1: Distribution of syllabi data across different schools; most of the syllabi were obtained from Harvard College of

Arts and Sciences and GSAS.

We must first convert textual data to a usable form as the scraped data is in an inconsistent and

ineffective format (unnecessary words, code, etc). This means tokenizing, removing stop words

(frequently occurring words such as "the", "and", "is", etc.), capital letters, punctuation, HTML

tags, e-mails, numbers, words that occur once, non-English words, and ASCII characters over 127

[1]. We create functions to either stem or lemmatize the data, but leave these actions as the user’s

choice in our interface as stemming and lemmatizing are mutually exclusive actions. Stemming

truncates the word’s root, while lemmatization converts words to their foundational dictionary

basis. Each has its benefits and weaknesses. For example, stemming would convert "meeting" to

"meet", while lemmatization would be able to tell from context whether "meeting" is a noun or a

verb and then convert to the right root, "meeting" or "meet". Lemmatization is therefore more

2

TRiCAM • Summer 2017 •

accurate than stemming, but is also computationally more expensive. We also want to void our

data of words that occur too frequently or too rarely, as they will not give us much insight into the

text and may deter how the models work with the text. For this reason, we have inserted a

word-frequency slider object in our interface that will allow the user to pick words to chop off;

more explanation is giving in the Implementation and Interface section.

After cleaning the data, we run the data through statistical models. We use a few key Python

packages to build the models: Pandas, Gensim, Sklearn, and spaCy. Using the Pandas package,

we create a term-frequency (TF) matrix from the course syllabi. The term-frequency matrix is

defined as a D×W matrix that contains the frequency of unique words W in a collection of

documents D, in this case, the syllabi, where each row corresponds to a document d and each

entry in the column corresponds to a word w in that document. We create prototypes for four

common statistical models that build off of the TF matrix and that represent a range of statistical

comparison methods: Term Frequency Inverse Document Frequency (TF-IDF), document

similarity with spaCy, Latent Semantic Allocation (LSA), and Latent Dirichlet Allocation (LDA).

Each of these statistical models has a similar structure: input a certain term-frequency matrix,

map the documents to a vector space by creating a vector of a document’s words (either all given

words or keywords) based on the word’s associated weight, and perform cosine similarity to

compare documents. The formula for cosine similarity is:

cos(x, y) =
x · y

||x|| · ||y||

where x represents one document and y represents the other document to which x is being

compared. The dot product of two vectors represent how close they are, and therefore, how

similar. When given a course x, the interface will run the model and compare x to all other

courses. Each will receive a cosine similarity score; the scores closest to one represent the most

similar courses. The interface returns the most similar courses (per the number selected by the

user).

We then conduct some analysis. For example, we can compare similar courses by department to

see which departments contain the courses most similar to the inputted course.

3

TRiCAM • Summer 2017 •

Figure 2: Similar courses to "ANTHRO 2674: Legal Anthropology and Modern Governance" by department–"SOCIOL

182: Law and Society" has the highest cosine similarity score, therefore the most similar.

III. Statistical Models

A total of four models are used in the interface. Below is a discussion of the models along with

their strengths and weaknesses:

Term Frequency Inverse Document Frequency (TF-IDF): TF-IDF determines how important a

word is to a given document based on its frequency in each individual document and the overall

corpus [8]. The TF-IDF matrix incorporates the D×W TF matrix, as defined earlier, and a W ×W

inverse document frequency (IDF) matrix. The purpose of the IDF matrix is to dampen the TF

matrix and avoid over-representing frequent words.

The W ×W IDF matrix is constructed by summing down the columns of a D×W binary

document frequency matrix where a term is given a score of 1 if it appears in the document and 0

if it does not appear in the document. Each entry is further dampened by taking the natural

logarithm and adding 1. The TF and IDF matrix are multiplied together, resulting in the D×W

TF-IDF matrix.

Each entry of the TF-IDF matrix may also be calculated individually. We may calculate the TF and

IDF scores for each word in each document. The TF score is calculated by the following formula:

TF(w, d) = count of w in d

where w ∈W and d ∈ D.

4

TRiCAM • Summer 2017 •

As mentioned, TF alone over-emphasizes words that occur in many documents. To compensate,

the inverse document frequency score is calculated to diminish the weight of words that occur

frequently across the corpus, D:

IDF(w) = 1 + log(
D

∑ d that contain w
)

Below is the formula for the TF-IDF score for w in d:

Value = TF ∗ IDF

In summary, these calculations result in a D×W matrix where each row is a vector representation

of a document in the corpus. The vectors correspond to values scoring each word, w ∈W ,

according their relative importance to the document and in the context of the corpus. Each

document vector can be compared with the other documents’ vectors using cosine similarity. The

documents with the highest cosine similarity score are the most similar.

Sklearn provides a package for TF-IDF that calculates the weights for TF-IDF matrix. These

individual weights are compared across documents using cosine similarity. While TF-IDF is

computationally efficient and serves as the basis for many other statistical models, it does not

account for synonyms. For example, the strings "their football captain played well tonight" and

"the basketball player had a good game this afternoon" would receive a TF-IDF score of zero

although the strings clearly have correlation.

Latent Semantic Analysis (LSA): LSA starts with any term document matrix and does dimension

reduction using singular value decomposition (SVD). SVD asserts any m× n matrix, A, can be

factored into 3 smaller matrices. In our project, to increase accuracy and by recommendation of

the Gensim developers, we use the TF-IDF matrix as the input matrix. LSA differs from TF-IDF

because, instead of comparing individual words, LSA strips away all but the most important

combinations of words or the "topics" of the document set [8].This is especially advantageous for

comparing two documents which humans could identify as similar but may not share any exact

words. If these documents share many terms with a third document, they will end up being

similar in the projected vector space. For example, the problem presented in TF-IDF with the

short documents, "their football captain played well tonight" and "the basketball player had a

good game this afternoon" would be solved if another document existed in the corpus tying them

together, like "Each player, including the captain, is important in team sports like football and

5

TRiCAM • Summer 2017 •

basketball". This is able to solve the problem that TF-IDF alone cannot tackle.

Let A be the TF-IDF matrix created from D documents containing W unique terms with rank r.

This would mean:

A = TΣFT

where T represents an W × r term-concept matrix, Σ represents a diagonal r× r matrix with

non-negative decreasing singular values on the diagonal, and FT is an D× r concept-document

vector matrix. Σ describes the relative strengths of the concepts, T describes the relationship

between terms and concepts, and FT describes the relationship between concepts and documents.

After finding this factorization, we apply SVD truncation, by first choosing a number of "topics", t,

and keeping only the highest entries in Σ. We truncate T and FT , keeping only the values

corresponding to the retained values of Σ. Mathematically, the product of these 3 reduced vectors

is the closest approximation of A in a k dimensional space. In application, we have reduced the

original matrix to only its most important concepts. The resulting matrix is a topic-document

matrix where each row represents what proportion of a document’s content is composed of each

generated topic. If the reader would like a more in depth explanation and several illustrative

examples, they should consider reading the introduction to LSA given at

https://matpalm.com/lsa_via_svd/intro.html.

Gensim provides a package to run the LSA algorithm. This model is computationally more

expensive than TF-IDF to implement, but more accurate as well since synonyms may be

recognized as the same topic. The expense comes in when adding in more documents; one has to

recalculate the truncated matrix each time new words are added.

Latent Dirichlet Allocation: LDA intends to improve upon LSA by allowing for mixed

membership of topics [3]. That is, each document d may be assigned multiple topics t, words w

that frequently occur together. This allows for a fewer number of topics to be vectorized, further

reducing the TF-IDF matrix’s dimensions–a more efficient formula. [2].

LDA starts with the TF-IDF matrix as well, then infers topics from the words of a given document

based on the prior Dirichlet distribution (a multinomial distribution over possible parameter

values of words in each topic for a multinomial distribution of topics in a document). The

6

https://matpalm.com/lsa_via_svd/intro.html

TRiCAM • Summer 2017 •

overarching formula for a document’s LDA topic distribution is as follows:

Pr(t, θ1:D, z1:D|w1:D) =
Pr(t, θ1:D, z1:D, w1:D)

Pr(w1:D)

where Pr equals probability, t equals topics, θ equals topic proportions for topics in a document, z

equals topic assignments for words in documents, w equals words, and D equals documents.

However, this formula is impossible to compute directly if one does not know the probability of a

word’s appearance in a document, and one must either determine this probability by trial and

error or sampling methods.

Gensim provides a package that runs the LDA formula using Gibb’s sampling–a word from the

TF-IDF matrix defined above is randomly assigned a topic based on a Dirichlet distribution for

the given number of topics, then these topic distributions are improved through an iterative

process. Each word is assigned a new topic t by:

Pr(t generated w) = proportion(t|d) ∗ proportion(w|t)

until a coherent topic mixture is reached. The resulting D× t matrix is a topic-document matrix

where each row represents what proportion of a document’s content is composed of each

generated topic.Each document is then represented as a percentage of different topics which sum

to one. The LDA matrix is essentially a further reduced rank version of the matrix from LSA.

LDA is more efficient than LSA. Instead of factoring in more words each time a new course is

added, we can just incorporate these new words into the existing topics. However, LDA does not

alleviate other issues with LSA, such as determining the optimum number of topics. As discussed,

we must determine the optimum number of topics for LSA and LDA. This optimum number of

topics will not be the same for LSA and LDA and it will not be the same across data sets. Both

LDA and LSA are topic models and while in theory LDA increases accuracy by allowing mixed

membership of topics (and therefore requiring less topics), it over-fits the topics on documents

with small bodies of text, lending too much emphasis to unnecessary words. Bergamaschi and

Sorrentino found that compared to user preferences, LSA is twice as precise as LDA when

recommending similar movies based on plot [2]. Their method is extremely similar to ours (they

employ movie plot descriptions to compare movies) and thus their findings validate our distrust

of LDA.

Note: It is difficult to determine the optimum number of topics t in topic modeling. The method

for doing so is highly controversial and the number of topics differs across models and documents

7

TRiCAM • Summer 2017 •

[7]. LDA requires less topics than LSA due to the mixed membership of topics. In addition, more

documents require more topics, but at a decreasing non-linear rate as some new document

concepts may be incorporated into existing topics. We try many methods (Silhouette Scores, Log

Perplexity, and multiple Coherence Measures) and settle on the Cover Coefficient (CC) method of

implementation for LSA for its convenience, accuracy and ability to be generalized across a range

of documents. We use the CC formula t = DW
p , where D equals number of documents, W equals

number of terms across documents, and p equals number of non-zero entries in the term

document matrix [4]. After experimenting with a number of topics, we decide to use t = DW
3p for

LDA. The CC method ignores word distribution and context of words, and therefore has low

computational cost. Although rudimentary, the CC method is more accurate than other proposed

methods on our data.

Document Similarity with spaCy: While topic models efficiently leverage statistical information,

they do relatively poorly on the word analogy task, indicating an unsatisfactory vector space

structure. spaCy, by default, uses the Global Vectors (GloVe) algorithm to produce word

embeddings. GloVe provides word representations that outperform other models on word

analogy, word similarity, and NER tasks. What GloVe essentially does is create a matrix of

word-word co-occurrences–how many times a word occurs in the context of another word [5].

This matrix is mapped to a vector space; GloVe uses a least squares regression model to minimize

the dot product between word vectors. spaCy trains GloVe on Common Crawl corpus by default,

which offers free web page data. Using these word embeddings, we are able to map documents

from our corpus. spaCy averages the term vectors for each documents to represent it, and then

cosine similarity is done to come up with similar document suggestions.

Ensemble Methods: We employ an ensemble based voting system to our recommendation system.

Each model (TF-IDF, spaCy, LDA, LSA) receives equal weight in selecting similar documents. The

user picks the number of similar documents they desire for the inputted document, and each

model generates a ranked list of similar documents. The most similar document is given the

highest score and the least similar document is given a score of 1. For example, if the user wants

the top ten similar documents, the most similar is given a score of 10 and the tenth most similar

document is given a score of 1. Then each similar document is summed across all models (for our

example, the highest theoretical score is 40) and a new list is obtained where the highest score is

the most similar document.

8

TRiCAM • Summer 2017 •

IV. Implementation and Interface

Using Plotly’s newly developed Dash framework, we designed a locally hosted web interface that

implements the previous steps (upload, clean, model, test, and analyze data) [6]. The Dash

framework allows interactive Python web applications to be built with little to no setup. The

front-end of the application was developed using HTML and Dash components, while the

back-end was built using Python and various packages. Rather than moving between multiple

HTML pages, our application works as a single page. As the user navigates through the various

steps, the content of the page is simply refreshed with the necessary front-end components. Dash

makes this easy to do with callbacks, event handlers that allow for the capture of user actions such

as clicking, moving sliders, and loading data. When an event is fired, the Python methods

following the event return the necessary HTML components and/or data needed to update the

content of the application.

Our interface contains the following steps:

• Load Data: The user uploads a csv data file of documents that contain textual data with the

minimum columns: name and description. The user then selects two columns (name and

description) to be analyzed. For the course syllabi data, these columns are course name and

syllabi body. The interface creates a data frame of these columns to be cleaned and allows

the user to preview these columns.

9

TRiCAM • Summer 2017 •

Figure 3: Load Data Page

10

TRiCAM • Summer 2017 •

• Clean: Non-ASCII characters and punctuation are automatically removed from the data

frame; these are required in order for the model to work. The user can select additional

cleaning options (remove HTML, e-mail, stop words, non-English words, and/or numbers

and lowercase the data) based on the nature of the data they are using. The user may also

choose to either stem or lemmatize the data.

Figure 4: The first cleaning section. The user is presented with a few default options, plus other options which they can

choose or leave out from the cleaning process.

11

TRiCAM • Summer 2017 •

• Clean (part 2): The user may employ the cutoff slider to to remove high and low frequency

words. The y-axis contains indexes for each term in the corpus, and the x-axis contains the

documents that these terms occur in. After removing these words, the user may download

the data. One may use our interface as solely a cleaning tool rather than a recommendation

system.

Figure 5: Clean(part 2) section; in this example, the user has not picked a bottom threshold percentage, which means

words in the bottom frequency are not truncated. The user chose to omit words that occur in about 50% or

more documents. The right side of the object shows what words were removed from the top threshold.

12

TRiCAM • Summer 2017 •

• Build Model(s): The user selects which statistical models they want to use for comparison

(TF-IDF, spaCy, LSA, LDA). The models are then built. If multiple models are selected, the

interface employs the aforementioned ensemble method to output recommendations.

Figure 6: Build Model(s) page. The user is able to pick as many models as they would like. Each model comes with a

short description of how it behaves with the data. In this instance, the user picked all but the LDA model; the

interface will do an ensemble voting to generate recommendations.

13

TRiCAM • Summer 2017 •

• Test: The user selects a document and the number of similar documents they desire. The

interface generates a ranked list of similar documents. In Figure 7, the user has selected the

course "GOV 1118: Political Geographies of Violence". The interface returns "GOV 1732: The

Origins of Modern War" as most similar.

Figure 7: Testing the model and viewing the recommendations outputted.

14

TRiCAM • Summer 2017 •

• Analyze: The user can choose to further analyze the contents of their data. If the user

selects "Entities", they can view the named entities (books, people, languages, etc) within

their data set. The pie chart represents entities that appear in the corpus. The percentages

represent the proportion of that entity to all the entities in the documents. If the user clicks

"Select An Entity", they may view those entities in the data set. For example, if the user

clicks "Work of Art", they will obtain the most common books in the data set. Cardinal and

Ordinal refer to numbers.

Figure 8: Pie-chart of entities appearing in user inputted data set.

15

TRiCAM • Summer 2017 •

In the analyze section, the viewer may also select "Visualize Topics" to view the topics that

are contained their data set. Each dot represents a different document and each color

represents a different topic; the three words that represent each topic are listed on the right.

The color of the text matches the color of the cluster (topic). Closer dots mean that those

documents are more similar.

Figure 9: Topic cluster visualization, with topic names on the right list.

V. Discussion

i. Generalized Interface

We construct our recommendation system to be generalizable; that is, it can load any textual

dataset and, based on a text column, output similar documents. For example, when "given" a

database of Wikipedia book summaries, our recommendation system will suggest similar books

to the inputted book title. We have applied our system to political social media (Trump tweets

obtained from www.reddit.com) to suggest similar tweets by date tweeted. We also brought our

system to the law clinics at Harvard for suggestions and have implemented our system on court

data (obtained from www.mass.gov). The user inputs a criminal offense and based on the charges’

descriptions, receives similar offenses. A lawyer may use our recommendation system to find an

alternative, more appropriate sentence that has a lesser charge. Our system has many useful

possibilities, from resource management to career suggestions.

ii. Future Work

Our cleaning and modeling processes will be refined to make the system more accurate. Ideally,

our system would preserve entities (book titles, events, etc). However, this is computationally

16

TRiCAM • Summer 2017 •

expensive for each entity has to be preserved as a token during cleaning then added back to the

data after other words are tokenized and cleaned. Therefore, named entity extraction is not

efficient to implement in our model prototype.

We will add additional analysis features into our interface. For example, we want to filter our

recommendation system by department, so the user may search for similar courses within one’s

department.

Our interface will be integrated into Harvard’s existing server to increase accessibility and

efficiency. Harvard currently has a website where one may input a subject and obtain a list of

Harvard resources about that subject. VPAL plans to create a similar website for our

recommendation system accessible to Harvard students and faculty.

Acknowledgements

Sponsors: Dustin Tingley (VPAL Faculty Director) and Daniel Seaton (VPAL Senior Research Scientist)

Mentor: Margo Levine (Harvard Associate Director of Undergraduate Studies in Applied Mathematics)

Funding: NSF REU Site: Team Research in Computational and Applied Mathematics, NSF DMS-1460870

References

[1] S. Bansal, Beginners guide to topic modeling in python. obtained from Analytics Vidhya, 2016.

[2] S. Bergamaschi, L. Po, and S. Sorrentino, Comparing lda and lsa topic models for content-based

movie recommendation systems, December 2015.

[3] D. Blei, Probabilistic topic models, Communications of the ACM, 55 (2012), pp. 77–84.

[4] F. Can and E. Ozkarahan, Concepts and effectiveness of the cover-coefficient-based clustering

methodology for text databases, ACM Transactions on Database Systems, 15 (1990).

[5] C. Manning, J. Pennington, and R. Socher, Glove: Global vectors for word representation.

Stanford University Computer Science Department, 2014.

[6] Plotly, Dash by plotly. user guide and github code used as references, 2017.

[7] J. Tang, Z. Meng, X. Nguyen, X. Mei, and M. Zhang, Understanding the limiting factors of topic

modeling via posterior contraction analysis, Proceedings of the 31st International Conference on

Machine Learning (ICML-14), (2014), pp. 190–198.

17

TRiCAM • Summer 2017 •

[8] X. Tang, T. Yoshida, and W. Zhang, Tfidf, lsi and multi-word in information retrieval and text

categorization. presented at 2008 IEEE International Conference on Systems, Man and

Cybernetics, 2008.

18

	Background
	Methods
	Statistical Models
	Implementation and Interface
	Discussion
	Generalized Interface
	Future Work

