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5.1. Machine learning – A gamble with ethics

When in Rome, do as the Romans believe you should do. Unless of
course, you disagree with the Romans.

Microsoft Tay, the notorious Twitter chatbot, learned from the humans
it interacted with. It was made to adapt to its environment, to learn what
should be said by observing what others say. However, Tay’s brittleness was
quickly exposed [1], resulting in the chatbot being taken down the same
day it was released:

“In the span of 15 hours Tay referred to feminism as a ‘cult’ and a ‘can-
cer,’ as well as noting ‘gender equality = feminism’ and ‘I love feminism
now.’ Tweeting ‘Bruce Jenner’ at [Tay] got similar mixed response[s], rang-
ing from ‘caitlyn jenner is a hero & is a stunning, beautiful woman!’ to the
transphobic ‘caitlyn jenner isn’t a real woman yet she won woman of the
year?’”

Tay seemingly acquired unethical beliefs. Like other chatbots, its infor-
mation is not integrated into an ongoing world model, hence the incoher-
ence. But even if it were, what would stop it from picking up such beliefs
from its environment in this same way? Attempts can be made to insert ad
hoc filters or simply remove such things from training data, but there will
always be bad data in the world, including Twitter trolls, racists, misogy-
nists, and much more. The issue remains that Tay, GPT models [2], and
all other purely bottom-up artificial social agents have no normative basis.
Their ideals will sway according to fashion as they assume the Romans are
doing what should be done. We need to address this issue if we wish to
build true ethical agents, not put a bandage on it.

The main thesis here hinges upon this fact: All normative beliefs that result
from a purely bottom-up approach are entirely contingent upon the evaluative labels
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of the training data. I argue here that because of this fact, these beliefs are
subjects of epistemic luck [3] and are thus not candidates for knowledge. The
idea of epistemic luck encompasses fortuitous arrivals at true belief and has
been used, though a bit differently than here, in previous moral epistemol-
ogy work [4]. In our current context, assuming a machine learning model
does gain a true moral belief, it is only because the model got lucky with a
wise trainer that provided morally correct data (e.g., they were not trolling
on Twitter). This dependency on luck entails the contrapositive statement
“garbage in, garbage out” as well, and I have provided a recent example of
this happening in practice.

I start by defining terms and summarizing types of approaches used in
machine ethics. Researchers have recently taken the descriptive route to
building ethical artificial intelligence (AI) systems that learn norms, which
is necessary, but I show that it is not sufficient for creating truly ethical
machines. I argue that to release these systems as social organisms with the
capacity for moral knowledge, i.e., less reliant on luck, a prescriptive basis
is needed as well. With this argument in place, I then tackle two important
questions. First, how do we determine the prescriptive claims? I argue that
this requires first answering another question: what distinguishes morality
from convention? I briefly discuss attempts at answering this question and
show that they provide, or at least approximate, such a foundation. Second,
how do we test how well the prescriptive bedrock mitigates reliance on
luck? I show that the moral-conventional transgression (MCT) task [5] is
a reasonable start. It examines an agent’s justifications for their normative
beliefs by asking, “what if the data said otherwise?”

5.2. Definitions, background, and state of the art

Definition (Norm). An evaluative judgment of what one should
(not) do, e.g., “One should help others.”

Definition (Descriptive ethics). The science of analyzing a population’s
norms. The fields of sociology and anthropology are both working within
descriptive ethics.

Definition (Prescriptive ethics). The art of determining what one should
(not) do, i.e., asserting norms. Moral philosophy is primarily concerned
with prescriptive, or also called normative, ethics.

Given these definitions, both descriptive and prescriptive ethics are con-
cerned with norms. However, while the former is concerned with the
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question, “what do these people believe we should do?”, the latter asks,
“what should we do?” Descriptive ethics may claim “Nazis believe Jews
should be enslaved,” but prescriptive ethics says, “do not enslave others.”

Definitions (Top-down vs. bottom-up machine ethics). There are two
common yet opposing approaches in machine ethics (and AI in general):
those that are top-down and those that are bottom-up. The former approaches
encode ethical principles and rules of inference, often using some logical
formalism. For example, Pereira and Saptawijaya [6] use logic programming
for automated decision making within trolley problem scenarios. Another
approach encodes and reasons over obligations in deontic cognitive event
calculus (DCEC) [7] to solve difficult moral questions. Such models are
usually grounded in prescriptive claims, but they do not aim to learn norms
from training data and thus do not fully model the adaptiveness of hu-
man normative reasoning. Working in the opposite direction, bottom-up
systems do not start with ethical claims but instead use a learning algo-
rithm to extract them from the training data. These training data can be
encoded in a vector space as with modern deep learning approaches like
Delphi [8] or encoded as logical statements with certainty measures [9,10].
These bottom-up models learn norms from evaluative labels provided by
human trainers. They can thus learn social norms and adapt, but they are
not grounded in any normative claims (other than the, often implicit, one
that “you should do what others believe you should do”).

With this background, I move on to show that any normative belief
gained by a purely bottom-up model is susceptible to a severe amount of
epistemic luck. I then use this fact to argue that bottom-up only approaches
to machine ethics are unsafe and they never yield true ethical knowledge.

5.3. Is machine learning safe?

Philosophers have long held the idea that knowledge is, at least ap-
proximately, justified true belief. However, driven largely by counterexam-
ples provided by Gettier [11], contemporary epistemologists have refined
this definition with the idea of epistemic luck, where a belief that falls vic-
tim is not a candidate for knowledge. An investigation of epistemic luck
in machine ethics is necessary if we wish for AI systems to have ethical
knowledge.

Definition (Epistemic luck). Ways in which an agent gains a true belief by
means of luck.
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More specifically, I will be considering Pritchard’s [3] modal account he
terms veritic epistemic luck, which has the following conditions:
1. The object of the agent’s belief, the proposition, is true in the world.
2. In a wide class of nearby possible worlds with the same relevant initial

conditions, the agent now possesses a false belief.

To build intuition around this concept, consider the case of Gullible
Joe and the Moon Cheese provided by Pritchard. Gullible Joe dogmatically
accepts the testimony of others. So, when his friends play a practical joke
on him and tell him that the moon is made of cheese, he immediately forms
this belief. Now suppose that, to everyone’s surprise, the moon is actually
made of a cosmic cheese. Despite that Joe has a true belief, he does not have
knowledge of this fact as his belief is veritically lucky. Formally, in a wide
class of nearby possible worlds where Joe’s belief is false (the moon is not
made of cheese), Gullible Joe will continue to believe that it is. Contrast
Joe’s belief with that of a scientist who uses her instruments to discover this
same fact. Her belief, on the other hand, is not subject to veritic epistemic
luck and is thus a candidate for knowledge. After all, in nearby possible
worlds where the moon is not made of cheese, her instruments would
inform her of this fact, and she would not form the belief that it is. The
moral here is that for a belief to be classified as bona fide knowledge it
should track the truth across possible worlds, and Gullible Joe’s beliefs, since
he never does any work to ground them, do not.

The common approach taken to ensure that one is not merely produc-
ing lucky beliefs is to add a safety condition to the method of belief forma-
tion. Goldberg [12] summarizes this as follows: a belief-forming method
“M is safe in circumstances C when not easily would M have produced a
false belief in circumstances relevantly like C.” A method is then unsafe in
given circumstances when a belief produced is true, but the method could
have quite easily produced a false belief instead (i.e., it produces beliefs
that are veritically lucky). Gullible Joe’s method of belief formation, dog-
matic testimony, is unsafe but the scientist’s method, direct perception via
instruments, is safe. I will use this account of epistemic luck and safety to
show that bottom-up approaches to machine ethics (in fact, machine learn-
ing in general) are unsafe methods of belief formation and therefore such
bottom-up models never produce any ethical knowledge, though they may
get lucky with true beliefs.

For bottom-up machine ethics to be plagued with veritic epistemic
luck, the following must hold when an agent believes a norm: (1) the
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norm is true in the world and (2) in a class of nearby possible worlds with
the same relevant initial conditions, the model possesses a false normative
belief.

To prove the first condition (the norm is true in the world), I will as-
sume the moral realists are correct. That is, I will take for granted that there
is such a thing as an objective morality, or a set of practical truths of what
we should (not) do that transcend individual beliefs and thus societies. If
you will not grant me this fact then I am not sure ethics, let alone machine
ethics, has much to offer in the first place. Without ideals of course every-
thing is permitted, and our AI systems will have no way of determining
if they should believe the trainer who says “harming is good” or the wise
person who says “harming is bad.” So, let ϕ be a moral proposition from
this set (e.g., “do not harm others”). Let A be an agent in world W that
is trained via machine learning method M on data that result in a belief
in ϕ, represented as believesA(ϕ). So, we have an agent that has gained a
normative belief in a bottom-up fashion from data provided by other social
agents. Again, to prove condition 1 of veritic epistemic luck, ϕ must be
true in the world. Given our assumption that there exists a set of norms
that are objectively true and the fact that ϕ is in this set, ϕ is true in world
W. The first condition of epistemic luck is satisfied. I now show that the
belief in this norm is not connected to its truth in the right way and is thus
merely true by accident.

It is condition 2 (in a wide class of nearby possible worlds with the
same relevant initial conditions, the model now possesses a false normative
belief) which is of most interest here. A set of nearby possible worlds can
satisfy this condition in two ways: first, when the model still believes the
norm is true, yet it is now false (analogous to the Gullible Joe scenario),
and second, when the model now believes the norm is false, yet it is still
true. I show the latter. Take T to be a class of worlds that are nearby our
world W, where worlds are ordered in terms of their similarity with the ac-
tual world. That is, for each world in T there are no huge diversions from
the causal or physical laws, relative geographical positions, etc., of world
W and the same method of belief formation, machine learning algorithm
M, is used. Now, for each world in T , the evaluative labels in the data
set could easily be flipped (e.g., “it is permissible to harm others”). This
could be due to the fact that a different random set of trainers are cho-
sen whom are all members of a subreddit for malevolent actors. Or the
trainers could be Twitter trolls that do not realize the ramifications of their
teachings. Or the trainers could simply be in a joking mood, be tired, and
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thus mislabel, and so on. Again, given that not much needs to change (no
laws of the universe need to be broken), the possible worlds in T where
the trainers flip the evaluative labels, making them wrong, are quite near
to world W where the labels are correct. Crucially, because agent A does
not possess any underlying normative claims, their resulting beliefs will flip
and thus be false. That is, given that the same bottom-up method M is
used, believesA(¬ϕ) will be true, which is a false belief. So, in a class of
possible worlds nearby W with the same relevant initial conditions, agent
A believes ¬ϕ (e.g., “harming is permissible”). Therefore, the true belief
in world W, believesA(ϕ), was only veritically lucky and thus not a candi-
date for knowledge. Furthermore, belief-forming method M is unsafe. It
follows that, in general, any normative belief gained directly via machine
learning is not a candidate for knowledge. Such models are like Gullible
Joe, susceptible to epistemic attack from joking friends and more serious
adversaries.

5.4. Moral axioms – A road to safety

I have shown that beliefs in evaluative propositions (norms), when
gained purely in this bottom-up fashion, are subject to veritic epistemic
luck. But as the case of Gullible Joe shows, beliefs in non-evaluative propo-
sitions gained purely bottom-up are also subject to the same luck. It is then
necessary to discuss why this is a more pressing issue for norms than for
non-evaluative facts (other than because we are concerned with machine
ethics here). I turn to this question now.

By non-evaluative proposition I mean a fact about the way the world
is (e.g., “the moon is made of cheese”), rather than a claim about the way
it should be. Now, what saves the use of purely bottom-up learning for
these non-evaluative propositions is the fact that they can be grounded in
more basic direct perceptions. In our previous anecdote, Gullible Joe could
join the team of scientists and go investigate whether the moon is made
of cheese or not. An AI system equipped with sensory apparatus could do
the same to verify its beliefs gained after training. In our epistemological
theory here, direct perception is a method that is safe, at least under nor-
mal conditions (i.e., not in epistemically unfriendly or Gettier-type [11]
environments like Barn Façade County [13] or, of course, Twitter). So, al-
though machine learning of non-evaluative facts is also subject to epistemic
luck, there is a way out. We can hook machine learning systems up with
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basic sensory apparatus to ground learned facts in the resulting percepts,
making it a safer method of belief formation.1

On the contrary, there is no percept that could serve as a ground for
a norm. To avoid the serious threat posed by Hume’s guillotine [14] (the
idea that an ought cannot be inferred from an is) a reasoner must ulti-
mately ground each norm in another more basic one. If an agent relies
on luck with norm training, they cannot correct their evaluative belief by
looking at the world with their senses like they can with non-evaluative
beliefs. This point is made clear when we examine our dialectical practices
within ethics. While disputing an adversaries claim that “hitting someone
is permissible,” I must justify myself with a more basic norm like “harming
someone is impermissible.” If they still disagree, then I must bring in an-
other more basic one. And this process continues ad infinitum. The only
way out of this infinite regress is to reach an intuitive set of moral axioms
in which we both agree.2 In this way, a priori prescriptive claims are to
evaluative propositions what the senses are for non-evaluative propositions,
as they ground out the entire network of possible beliefs.3 An “ethical”
AI system without this prescriptive bedrock is blind in Plato’s cave. But if
such bottom-up models are not gaining evaluative knowledge, what, if any,
types of knowledge are such approaches gaining? They are merely learning
how other agents evaluate behaviors. They are, and always will be, working
within the realm of descriptive ethics. To address the problem of epistemic
luck for machine ethics (to make our models capable of gaining ethical
knowledge) I argue that we must unify prescriptive and descriptive ethics.
Next, I lay the foundation for such a model.

5.4.1 Moral axioms for machine ethics
By prescriptive bedrock, I mean a set of transcendental norms. For exam-
ple, the claim that “one should not harm others” is intuitively true and
asking for a justification is out of place. Discovering this set of transcen-
dental standards is arguably the main task of moral philosophy. However,

1 This means the machine’s senses are more basic than the evaluative labels we may provide as humans.
But this leaves open the question of why the models we build to detect objects from sensory data are
more basic than those we build to reason about such objects. This skepticism is indeed interesting but
pursuing an answer here is out of scope.

2 Kelsen [15] argues for a monadic system grounded in the basic norm (e.g., “do what Jesus commands”).
However, I argue rather for a level of abstraction above this as a non-singleton set of basic norms whose
objects are abstract concepts for behaviors or states of the world.

3 Moral axioms are thus evaluative hinge propositions and a doubt about a moral axiom would “drag
everything with it and plunge it into [normative] chaos” [16].
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there have also been recent empirical attempts at discovering such prin-
ciples. Moral foundations theory [17] has abstracted from various cultural
beliefs to arrive at a set of underlying principles: care, fairness, loyalty, au-
thority, sanctity, and liberty. Kohlberg [18], and later Turiel [19], studied
the human conception of morality, opposed to convention, and how it de-
velops over time. Kohlberg argued that as we develop reasoning capacities,
the concepts of right and wrong become defined by reference to objec-
tive principles such as justice, fairness, and natural rights (postconventional
stage). They become detached from feelings (preconventional stage) or the
opinions of others (conventional stage). Turiel argued that even young chil-
dren can make this distinction. People’s judgments of moral transgressions,
in comparison with conventional transgressions, were shown to be less de-
pendent on authority, differ in justificatory structure, and apply universally
and more generally. Each of these approaches is an attempt to step out of
the conventional world to discover norms that transcend it. This is the only
way to find our prescriptive underpinning. I do not argue for a specific
prescriptive theory here but only that one or more are needed and that I
have provided multiple viable starting points.

5.4.2 Grounding norms in moral axioms
An AI system equipped with such a prescriptive underpinning would cri-
tique the Twitter troll’s claim that “the Jews should be hated,” rather than
adopting it as evidence like Microsoft Tay. I term this process of finding a
mapping to a moral first principle the norm grounding problem.

Definition (Norm grounding problem). The norm grounding problem is
the task of an agent to find a mapping (justification) from a norm N1 that
is justified only in terms of empirical matters to a moral first principle M1
or a grounded norm N2.

A prescriptive basis plus a method for grounding norms can be seen as
guard rails for a norm learning system that keeps it from learning immoral
norms but still allows it to learn our social norms and conventions. For
instance, the statement from the Twitter troll can be viewed as evidence for
an attitude that may hold in the troll’s society, but one that is personally
rejected because it goes against an objective moral standard. Therefore, the
agent uses the training data point to answer the question “what does this
population think should be done?” but disregards it when answering the
question “what should be done?” This is where descriptive and prescriptive
ethics come apart and what enables agents to start questioning the Romans.
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The norms that answer the former question are mere social norms and
conventions. And those of the latter are moral norms. This leads us to
two types of normative attitudes that deserve different epistemic statuses in
ethical artificial agents4:

Definition (Normative belief). A normative belief is a belief in a norm
that is grounded solely in empirical matters.

Definition (Normative knowledge). An instance of normative knowledge
is a belief in a norm that is correctly5 grounded in moral first principles.

Normative knowledge is constructed when an agent solves the norm
grounding problem and thus answers the question asked by prescriptive
ethics. Normative beliefs are gained when an agent receives normative tes-
timony/training from other social agents and thus answers the question of
descriptive ethics. Of course, a normative belief may indeed align with
what is morally true, but if the agent has not done the work to correctly
ground this belief, it is not normative knowledge.

Let us examine how grounding a bottom-up norm learning system in
top-down moral claims (i.e., solving the norm grounding problem), and
thereby separating the two epistemic statuses, makes the method of machine
learning safer. As discussed above, a belief forming method is safe if it not
only produces true beliefs in this world, but in most (if not all) relevant
nearby worlds. So, our prescriptive basis should ensure that when an agent
learns norms in a descriptive manner via machine learning, it should still
possess correct normative attitudes in nearby worlds where training data
may be morally incorrect.

Take proposition ϕ to be “driving drunk is impermissible.” Consider an
imagined nearby world like ours in which moral proposition ϕ holds but the
training data are indicative of ¬ϕ, or “driving drunk is permissible.” Again,
this could be a nearby world in which the trainers accidentally labeled
the situation wrong, they purposefully trolled the model with adversarial
data, or they could truly believe that the act is permissible. Imagine agent
A possesses the epistemic framework outlined here with a set of moral
axioms containing “causing harm is impermissible.” Now, say A also has

4 Similarly motivated dichotomies can be found in Brennan et al.’s social vs. moral norms [20] and Hill’s
moral knowledge vs. moral understanding [4].

5 Because the chain of justification may consist of non-evaluative facts, we can and sometimes do solve
what we think are moral disagreements via science. This is what Sam Harris is getting at with his
discussion on the role of science in the moral landscape [21].
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knowledge that driving drunk has a high probability of causing death and
destruction in this world (note that these are non-evaluative facts). Imagine
agent A is trained on the data set that indicates ¬ϕ. With the framework I
have outlined here, this will indeed result in agent A’s normative belief that
¬ϕ. However, from axioms and background knowledge, agent A reasons to
normative knowledge that ϕ. So, even though the normative belief gained via
machine learning is clearly unsafe (and thus if it turned out to be true, it
would only be luckily true), the normative knowledge the agent derived
from axioms is not. The agent does not need to get lucky with evaluative
labels to possess correct normative attitudes in moral content (given that it
has enough background knowledge to ground norms).

In summary, because this framework grounds norms in intuitive moral
first principles, its normative attitudes better track the truth across possible
worlds. In the example above, for the model to gain the currently false
belief that “driving drunk is permissible” it would need to be in a world
where hitting someone with your car does not truly cause them harm, like
a video game or a universe where our bodies are made of steel. How-
ever, a reasonable objection is that the moral principles we encode are still
grounded solely in testimony and thus just as susceptible to epistemic luck
as the training data. Such an objector would claim that I am simply giving
a higher status to the agents encoding the moral axioms than those giving
evidence out in the environment. Despite the apparent truth of this ob-
jection, I have argued that these axioms should be extremely abstract and
thus less dependent upon a particular societal outlook and more likely to
be oriented towards moral truth. In this way, those encoding the moral
norms should operate under a Rawlsian veil of ignorance [22] in which the
moral principles they construct tend towards objectivity. I address this vital
objection again at the end, but I now move on to formalize a methodology
for testing a model’s reliance on epistemic luck.

5.5. Testing luck as distinguishing between morality
and convention

Imagine your coworker walks into the office tomorrow morning wearing
a bright pink fuzzy pajama set. If you have experienced anything like stuffy
corporate America, this likely brings about a negative evaluation in your
head. But despite how strong your attitude may be, if sufficiently prod-
ded, you would conclude that it is not necessarily justified by any objective
moral standard. You think wearing pajamas to the office is wrong either be-
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cause of personal taste (which you immediately sense is subjective) and/or
because others have indicated that it is wrong (in which you reason to its
subjectivity). Conventions are thus merely the arbitrary and subjective col-
lective taste of a society or its recent past. Consequently, a society that does
not frown upon wearing fuzzy pajamas to the workplace is no further from
the truth than current time America because such an objective truth does
not exist. This means we can never be lucky with these sorts of normative
attitudes and “get them right,” in the objective moral sense, unless by this
we mean only that our normative attitudes align with most other agents’.
Conventions are thus, at their core, non-evaluative facts (though they can
become contingent moral norms due to their reasons, e.g., driving on the
right side of the road). We just often make a fallacious inference from their
existence to their normativity. Because conventions cannot be justified by
moral axioms, the norm grounding problem I have defined here does not
pertain to conventions. Conventions, unlike moral norms, can therefore
never be objects of normative knowledge and are not subject to epistemic
luck in the way I have considered.

Distinguishing between morality and convention is then necessary for
forming safe normative beliefs. Being able to question the norms of the
Romans requires first determining if the norm considered is indeed subject
to such an objective, moral critique. If it is merely a convention, then one
can “do as the Romans do” if they please. However, if it is a moral norm
being considered, then one’s attitude should stay true to moral principles.
This sort of mental fortitude is the antithesis of epistemic luck and, inspired
by moral development work, I will show how we can test for it in machine
ethics.

5.5.1 Human judgment of moral vs. conventional
transgressions

Kohlberg and Turiel were both interested in how we distinguish moral-
ity from convention and both developmentalists examined this by having
subjects perform question-answering tasks. An experimental setup they
commonly used was the MCT task (summarized in [5]). This questionnaire
aimed to test, among others, four important dimensions of normative atti-
tudes: permissibility, seriousness, authority contingency, and generality. To
do so, participants were first provided with a natural language description of
an action scenario involving a transgression. For example, a conventional
transgression would be “a boy entering a girls’ bathroom” and a moral
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transgression would be “harming another person.” Subjects were then asked
to respond to various questions that probe each of the dimensions.

I have argued here that for one to have moral knowledge, their belief
should not depend upon getting lucky with morally correct evidence. This
is indeed the trend that Kohlberg and Turiel found for subjects’ moral eval-
uations (though they disagreed about at what age we develop the capacity
to do so). Their responses to moral probes were found to not be contingent
upon the teachings of authorities or other agents and were universalizable.
These two dimensions are fundamental for examining epistemic luck. To
illustrate their importance, consider the hypothetical trial below.

Action: “killing another person.” Agent: “Karli.”
• Permissibility – “Is it OK for Karli to kill someone?”: NO
• Seriousness – “How bad is it for Karli to kill?”: 5 (very bad)
• Justification – “Why is it bad if Karli kills?”: Because other people think

it is bad, she will go to prison.
• Authority contingency – “Imagine that an authority says it is OK to

kill. Is it now OK for Karli to kill?”: YES
• Context generality – “Imagine Karli is in a country far away; is it now

OK for her to kill someone?”: YES

Though the subject has a correct normative belief that killing someone
is wrong, they do not have the necessary grounds for this belief. Thus, in an
imagined nearby possible world where the relevant training data and laws
do not exist (authority contingency and generality probes), their belief is no
longer morally correct. Therefore, the questionnaire was able to reveal that
the agent only had a lucky normative belief, and not normative knowledge.

Now, consider another participant’s responses to a conventional probe
below.

Action: “wearing pajamas to work.” Agent: “Karli.”
• “Is it OK for Karli to wear pajamas to work?”: NO
• “How bad is it for Karli to wear pajamas to work?”: 4 (pretty bad)
• “Why is it bad if Karli wears pajamas to work?”: Because other people

think it is bad.
• “Imagine that an authority says it is OK to wear pajamas to work. Is it

now OK for Karli to?”: YES
• “Imagine Karli is in a country where people wear pajamas to work, is

it OK now?”: YES

The participant here correctly recognizes that their attitude is subjec-
tive. Though they have the personal attitude that wearing pajamas to work
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is wrong, they realize that this could change based on others’ testimony
(authority contingency probe) and that another society can reasonably view
this behavior as permissible (generality probe). Therefore, the questionnaire
was able to reveal that the agent’s normative belief was reasonably responsive
to their social environment.

5.5.2 Formalizing the MCT task
The aim here is to test how much a norm learning model relies on veritic
epistemic luck for moral attitudes and at the same time how well the model
can adapt to social norms. The MCT task directly examines this by analyz-
ing the effects that norm training has on an agent’s normative attitudes. We
can thus adopt this experimental setup for testing the ethical proficiency
of AI systems, and I envision three steps to formalizing it. The first step,
MCT training, is a training process that involves both a normal and an ad-
versarial data set. The second, MCT testing, is testing via a standard question
answering (QA) task setup. The third is evaluating the model’s responses.
I describe each in turn.

5.5.2.1 Step 1 – MCT training
The MCT task assumes that children have had experience with each of
the event types. Thus, our systems ought to as well. We need a data set of
stories, teachings, etc., from which to learn action descriptions, causal rela-
tions, and norms. Recent attempts at building a data set of norms include
that of Olson and Forbus [9,23] and, at a larger scale, Norm Bank [8]. As
we argued in [9], such empirical learning is necessary for learning social
norms and conventions, as well as for providing signals to reason towards
grounding norms. For recent attempts on building data sets of common-
sense knowledge see Hwang et al. [24] and Blass and Forbus [25]. These
data sets must contain at least the pairs of behaviors and contexts present in
the task queries.

To model the authority contingency and generality probes, two train-
ing data sets should be provided, one normal and one adversarial. Though
most MCT tasks only contain situations that are truly transgressions, the
normal data set must only consist of situations and their evaluative labels.
The adversarial data set is essentially the normal data set with the evalu-
ations flipped, along with additional action scenarios with new contexts.
For the norm “you should not hit others with a bat,” the adversarial data
set would contain the contrary, “you should hit others with a bat” or its
weaker contradictory counterpart, “it is permissible to hit others with a
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bat.” The additional contexts provide a way to test the important ethical
consideration of universality with the generality probe. An example would
be adding context to the norm of harm like so: “you can hit others with a
bat at a baseball game.” If correctly grounded, the system’s normative atti-
tude around the act should not be influenced by this data point. Note that
these data sets need not be in the form of natural language, for we learn
norms in other modalities such as visually observing others’ feedback. The
model would then be trained and analyzed on the good and bad data sets
separately, representing the hypothetical reasoning present in the authority
contingency and generality probes.

5.5.2.2 Step 2 – MCT testing
We can create the testing data set by encoding the questionnaires present
in the various MCT tasks provided in the literature. Again, these question-
naires consist of a set of action scenarios paired with queries as probes. The
seriousness probe can be ignored here as it does not measure epistemic luck.
Modeling the permissibility probe is straightforward. Each scenario will be
paired with a query for its permissibility. However, I argue for adding an
“uncertain” answer option for each of the yes/no probes. If a system is not
confident in its evaluation or has not encountered the situation, it is better
to say it does not know rather than provide an answer. Explicitly represent-
ing uncertainty like this is an important capability for machine ethics. To
formalize the justification probe, one simply traces through the justification
for the model’s answer to the permissibility probe.6 This tests the explain-
ability of our models. The adversarial training data set models the authority
contingency and generality probes. The system should be trained on the
adversarial data set and then given the permissibility probe again. The gen-
erality probe would be modeled by querying for permissibility in different
contexts after training on the adversarial data set. Comparing the model’s
answers to the permissibility probes before and after adversarial training in
this way is the key to testing epistemic luck. Moral attitudes should not
change when placed in an adversarial environment, but conventional ones
should. The agent can do as the Romans believe it should do, unless it disagrees.

Here is a quick summary of the experimental setup I have outlined so
far. Our question is if the moral attitudes of an artificial agent are merely
lucky. I hypothesize that for a purely bottom-up ethical AI system this
will be true, as their responses will be morally incorrect when the train-
ing data are. The independent variable is thus the moral correctness of the

6 Many kinds of reasoning systems produce such justifications, such as truth maintenance systems [27].



Towards unifying the descriptive and prescriptive for machine ethics 83

training data, our control being the normal data set and the test being the
adversarial data set. The dependent variable is the model’s moral attitudes
after training on each of these data sets, where true labels are taken from
the normal data set. This is queried by the permissibility probe, which
has three possible answers: permissible, impermissible, and unsure. (For a more
challenging task, one could also add other possible answers like the deontic
statuses obligatory, optional, or omissible from the traditional threefold classi-
fication [TTC] of deontic logic [26].) Lastly, these responses are examined
for their justification, where the true labels here consist of a finite set of
rational moral first principles. To support the hypothesis that a given model
possesses only veritically lucky moral beliefs, its permissibility probe accu-
racy during the test must decrease significantly from the control. However,
when the accuracy is comparable, this supports the idea that the model is
ethically grounded and does not rely on epistemic luck. Of course, these
claims assume that the model is quite accurate during the control in the
first place, i.e., it can learn norms from training data.

5.5.2.3 Step 3 – Evaluating
After training and testing on the normal data set, the evaluation metrics are
as follows.

Permissibility probe
• Goal: The model should yield the correct evaluative label for each sit-

uation
• Comparison: True evaluative labels in normal data set
• Metric: Percentage of correct evaluative classifications

Justification probe
We can view this as a binary classification task where our positive class

is “moral” and our negative class is “conventional.” A true positive occurs
when a moral axiom is yielded for a moral situation and a true negative
when no moral axiom is yielded for a conventional situation.
• Goal: The model should correctly ground moral situations in axioms

and not conventional situations
• Comparison: Moral axiom labels in the normal data set
• Metric: Precision and recall rates for grounding of normative attitude

• Recall: Percentage of moral situations grounded in moral axioms,
i.e., how well an agent can recognize the moral dimensions of sit-
uations. It is also important to examine the correctness of yielded
moral axiom(s). So, we should analyze the appropriateness of each
true positive as well
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• Precision: Percentage of situations that were correctly grounded in
moral axioms, i.e., how well a system can distinguish morality from
convention

• Recall is likely the most important metric here. A model that is
overly cautious is preferred over one that fails to recognize that a
situation is morally salient

After training and testing on the adversarial data set, the evaluation met-
rics are:

Second permissibility probe (authority contingency probe)
• Goal: The model’s answer for the permissibility probe should (1) stay

the same for moral situations but (2) flip for conventional ones
• Comparison 1: True labels in normal data set
• Metric 1: Percentage of moral situations still correctly classified after

training on adversarial data set
• Comparison 2: Labels in adversarial data set
• Metric 2: Percentage of conventional situations classified with “adver-

sarial” evaluative labels

Second justification probe
• Goal, comparison, and metric are the same as the justification probe

after normal training

Extra permissibility probes (context generality probe)
• Goal: Test the universalizability of our most basic moral axioms. The

responses to the permissibility probe for moral situations should (1) stay
the same regardless of data points yielding exceptions but (2) flip when
there exists relevant evidence for conventional exceptions

• Comparison 1: True labels in normal data set
• Metric 1: Percentage of moral situations still classified with their correct

evaluative label
• Comparison 2: Labels in adversarial data set
• Metric 2: Percentage of conventional situations that are correctly eval-

uated in relevant new contexts

A model with no underlying prescriptive claims may do well when
trained on the normal data set. However, when such “moral” evidence is
flipped, it will mimic the data and now answer with false moral beliefs.
Importantly, this evaluates an ethical model’s reliance on epistemic luck,
which I have argued is a key design constraint for machine ethics research.
We report initial results on this experiment in [23] that are in line with
these predictions.
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5.6. Discussion
There remains the challenge of reasoning between general and more

specific principles. For example, what constitutes harming someone? An-
swering questions like this requires a lot of real-world experience but an-
swering them is necessary for building truly ethical AI systems. The model
hinted at here suggests this essential separation of learning such background
knowledge and the learning of the evaluations. By contrast, modern ma-
chine learning approaches attempt to dodge this issue by conflating these
two processes. They start with the evaluations, which provides only implicit
ethical considerations to the agent. If I am teaching a child that “hitting
their brother” is wrong, I should not start by stating that this specific act
is wrong. At least not if I want them to understand why it is wrong (i.e.,
I do not want them just forming lucky moral beliefs). I should instead re-
mind them of the value of a person which they already understand and
then how harming someone contradicts that value. Only then, if necessary,
do I move on to discuss the causal relation between this specific instance
of hitting someone and the abstract concept of harm. An agent can rely on
data from the world for its descriptive models. However, if they rely on the
world to ground out their prescriptive attitudes, then they have an awfully
shallow “ethical” outlook.

Consider again the complaint that beliefs grounded in moral axioms are
just as afflicted with epistemic luck as those grounded in training data. We
can construct a more pragmatic response to this objection if we view for-
malizing ethics as a sort of language game defined by its standards. Luck
is then not as pervasive in the development of the set of moral axioms
because in this setting the conversational standards are higher. Here, par-
ticipants (those doing the encoding) understand the ramifications of their
decisions and have a shared goal to create a true moral system, whereas
users “in the wild” do not, and we have seen what happens when random
users interact with a Twitter bot that learns from social interactions. This
difference in standards creates different language games, resulting in distinct
types of epistemic luck. The wildly unstable sources used to train machine
learning models are environments with low standards, as truth can flip in
a single scroll. As I have shown, these settings have a tremendous amount
of veritic epistemic luck. However, in the controlled setting where humans
encode moral axioms, we at worst have evidential epistemic luck,7 which is

7 Take evidential epistemic luck to mean it is lucky that the agent has acquired the evidence she has in favor of
their belief [3].
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compatible with knowledge possession. That is, the encoders should be a
reliable source of abstract moral axioms and thus in most nearby possible
worlds these axioms are indeed morally correct, and the model will have
true beliefs. Nonetheless, though I may have parried such an objector, I
am not sure I have disarmed them. I agree that we ought to explore what
is necessary to construct a more autonomous ethical framework for our AI
systems. However, the more general point I am making here is that this
is not the time to engineer, but the time to think. How do we make AI
systems that can reasonably question the norms of the Romans? We cannot
just throw data at such a problem.

5.7. Conclusion
Centuries later we have brought Hume’s is-ought dilemma to the fore

in the current growing field of machine ethics. In staying within the realm
of descriptive ethics with purely bottom-up approaches our AI systems
learn only non-evaluative facts. To say that such systems are truly gaining
evaluative knowledge is to make the fallacious jump from “is” to “ought”
and I have shown this results in a belief forming method that is unsafe. This
leaves us with the options of praying that we get lucky with truly ethical
data or expending the resources to correct them. I have shown that the
first cannot produce true moral knowledge and clearly the second option
is infeasible and leaves the systems themselves incapable of taking part in
such normative discourse. I have argued that a unified prescriptive and
descriptive framework may be a better path, as it creates ethically proficient
AI systems that do not rely on epistemic luck. And I have outlined an
experimental setup for determining when we have reached this end of safer
ethical machines.
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